Composition of Small Languages
for Resilient Embedded Systems:

Rethinking an “Operating System” for the Edge
Research Proposal « DC Resilient Embedded Systems

Albert Zak

This research project intends to identify novel expressive composition primitives that dissolve the
divide between middleware and operating system in pervasive information infrastructures, with a
focus on resilience — especially security, usability, and adaptive evolvability — and expressiveness

through the stacking of dynamic domain-specific languages.

Context. With advances in hardware enabling increasingly sophisticated software, devices con-
sidered embedded now commonly run UNIX-like operating systems. Current software engineering
methods reasonably allow for design, implementation, and operation of dependable systems, albeit

at high cost when sufficient guarantees are required.

Problem. Software today is bloated. Our stack is cheap, fast, and full of features. It is also
full of cruft, vulnerabilities, and we barely understand the innards anymore. With increasing need
to operate at massive horizontal scale over unreliable and hostile networks, while satisfying ever
higher user requirements and cost pressure to deliver more features in less time, the resulting

emergent nature of such systems causes a significant drop in dependability and security [1].

Flaws in underlying abstractions and tools are papered over with more of the same. Gradually, the
production and nurturing of the entire stack turns into an end itself instead a of a means toward an
end [2]. Such complexity begets permanent faults, as they were embedded at design time. Because
of the gradual change in responsibilities and shifting context of layers, the complexity incurred
by performance optimizations which had been necessary on previous hardware now stands in the
way. Common systems programming languages are focused on machine performance while lacking
in safety and expressive power needed to describe the behavior of pervasive systems: prevalent
mutable state together with its distribution over unreliable networks, weak language support for
explicit consistency vs. availability decisions, and little ability to accommodate changes especially
at runtime hinder prevention and tolerance of faults.



Relevance. We need novel specification and design methods which focus on dependability and
resilience aspects of large scale distributed systems, especially to prevent human-made fault classes
that occur during development, and to securely deal with malicious faults at runtime. Such systems
need to be late-bound, evolvable, and adaptive to enable maintenance and repairs at runtime, and

they cannot separate the concept of dependability from security [3].

Alan Kay’s research group led one exceptional project with the goal of creating a minimal and
understandable personal computing environment in less than 20,000 lines of code: STEPS [4][5]
bootstraps, from bare metal, an operating system with support for vector graphics, sound, network-
ing, a full user space including universal document editing capabilities and a hypertext browser.
Contrast their achievement to the tens of millions of lines of code [6] that comprise just the kernel

of common operating systems today.

The proposed endeavor is a rendition of similar ideas, albeit much simpler [7] and with a different
focus as the system’s intended placement on embedded devices does not require graphics or docu-
ment authoring capabilities. The entire stack may benefit from removing accumulated complexity
throughout the layers.

Goals. The grand vision is to rethink the basic concepts of computing and programming for a
world of distributed and embedded systems. Expressiveness, dynamism, and security are favored

over performance or machine optimizations.

One intent is to find abstractions that reduce and avoid state wherever possible [8]. Plain data
structures replace Kay’s objects [9] in the small. Objects as actors passing messages and keeping
state — when coupled with a mechanism for fault tolerance as seen in Erlang/OTP [10] — appear
to naturally belong towards the edge of the system, i.e. as gatekeepers for peripherals [11] and
to communicate with other nodes over the network. This tenet stems from the observation that
objects generally do not compose as trivially as data or pure functions do [12]. Instead of coupling
state with behavior while attempting to hide all of that inside an “object”, the system will decidedly
be built on the primacy of plain data structures, preferably immutable [13][14], with pure functions
operating on them in the small. Plain but rich data structures [15] such as maps, sets, vectors,
tagged literals, and keywords as a higher-level “lowest common denominator” instead of byte
streams are the system’s attempt to remove barriers of cooperation between worlds of processes,

nodes and languages.

The pervasive embrace of dynamic languages seems to be at odds with the state of the art in
language security research, as their focus lies mostly on static typing [16], yet Laprie noticed a
dissociation between resilience and stability and writes: “a system can be very resilient and still
fluctuate greatly, i.e., have low stability” and that “low stability seems to introduce high resilience”
[17].

The proposed ideas include a willingness to trade away performance optimizations in return for
almost everything else — simplicity, security, conciseness, aesthetics, introspectability, late binding,
developer ergonomics, etc. There will be no compilation [18] and the resulting system will likely

not run well on today’s embedded hardware.



Questions. Where do faults and vulnerabilities occur? What are better metrics [19] to assess
security in software? How and where to slice the stack? Where to demarcate between operating
system and middleware [20]?7 Do we even need a distinction [21]? How much of what can be
removed at each layer, from the hardware up [22]? What does it take to execute an understand-
able specification? Can we separate meaning from optimization? How do data, state, process,
and effects [23] interplay? Are there simpler primitives [24] that could collectively provide a run
time system? What abstractions compose cleanly and reliably even in higher layers [25], and are
abstractions even the path towards understandability [2]7 In what ways can we fit an object capa-
bility security model with delegation of authority [26] within the functionality vs. safety tradeoff in
order to achieve safe composition and reuse of untrusted functions? How can we keep the benefits
of maximum visibility into the lower layers and the ability to quickly reconfigure late-bound parts

of the underlying operating system?

Originality. The proposed research follows the spirit of discovery which led to ambitious working
systems such as STEPS [5], Mu [2] and Lisp Machines [27] while borrowing strategies from a vast
body of past work.

Some of the ideas to be combined include Kay’s “extreme late-binding of all things” [28] that
allows gradual refinement and experimentation on a running system. Metalinguistic abstraction
[29] creates a tower of interpreters [30][31] whereby each domain-specific language [32] sits on the
language below it, all of which are expressed in homoiconic forms [33]. Ultimately, the whole tower
should strive to read as an executable specification, where meaning is separate from optimization
[8][34]. From Smalltalk [35] the project takes its focus on messaging [36] and combines it with
mechanisms for fault tolerance [10] from Erlang/OTP [37].

Other ideas include the primacy of plain data and algebraic effects expressed as data as seen
in idiomatic Clojure [15], the parsimony and composability of Forth [38], and the programmatic
availability of abstractions [21], meaning there is little distinction between process and operating
system [39]. The project takes its ideas on security from various work on object capabilities [40][41],
the E language [42][43], and security models of operating systems such as Multics [44], Minix [45],
and KeyKOS [46].

Method. The proposed research will be based on iterative cycles of experimentation and con-
struction of a minimal and understandable working system. Starting a conversation with the
machine [47] and experimenting with its building blocks is supposed to lead towards the goal of
identifying simpler building blocks which compose to form a useful runtime system. Having a
small and understandable working model together with the ability to adaptively experiment with

and evolve at runtime seems like a useful artifact to study.
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